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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

TECHNICAL NOTE D-401 

ANALYSIS OF FRAME-REINFORCED CYLINDRICAL SHELLS 

PART 11 - DISCONTINUITIES OF CIRCUMFERENTIAL - 
BENDING STIFFNESS IN THE AXIAL  DIRECTION^ 

By Richard H. MacNeal and John A .  Bailie 

SUMMARY 

The stress distribution in, and adjacent to, an externally-loaded frame in a cylin- 
drical shell is  extended to include the effects of discontinuities of circumferential- 
bending stiffness in the axial direction. These effects may be caused by nearby heavy 
frames, planes of symmetry and antisymmetry, and free ends. Such problems can be 
solved with the aid of the "transmission" matrix for a finite length of shell. A complete 
derivation for the elements of this matrix is  given, which defines the force-displacement 
relationships at the ends of a finite length of shell. In addition to indicating exact 
solutions, this report derives an approximate technique and applies it to a number of 
practical problems. 

NOTATION 

Aik 

a n 

Bik 

Lcn(x)1 

PI 
E 

fin 
G 

Hik 

matrix elements defined in equation (100) 

matrix elements defined in equation (119) 

matrix defined in equation (41) 

transmission matrix for a frame 
2 Young's modulus (lbs/in ) 

abbreviations defined in equation (66) 

shear modulus (lbs/in2) 

matrix elements defined in equation (110) 
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Qi 
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Ri 
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J1 

J2 
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Kn 

moment of inertia of frame at x = 1 (in 4 ) 
3 

I/eo (in 1 

R + R  2 4  

R .- R4 2 
J7i- 

abbreviation defined in equation (58) 

2 characteristic length (see glossary) = r[Vr [i] / Jr (in. ) 

characteristic length (see glossary) = r 

distance from externally loaded frame 

frame spacing (in.) 

externally applied concentrated moment 

element of transmission matrix defined in equation (18) 

(in. - lbs) 

R1 + R 3  

R1 - R 3  

parameter defined in equation (38) of reference 1 

index of harmonic depedance in the @ direction 

externally applied concentrated radial load 

abbreviation defined in equation (1 16) 

roots of the characteristic equation 

abbreviation for Et' r Z 

matrix elements defined in equation (30) 

shear flow in skin (lbs/in) 

abbreviation for Et' r W Z 

matrix elements (see equation [29] ) 

(lbs) 

/n(W + Zll) 1 2  

2 / n2(W + Zll) 11 
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radius of the skin line 

matrix elements defined in equation (31) 

matrix defined in equation (41) 

externally applied concentrated tangential load (lbs) 

elementsof transmission matrix defined in equation (19) 

skin panel thickness (in. ) 

effective skin panel thickness for axial loads (in. ) 
matrix elements defined in equation (32) 

axial displacement (in. ) 
matrix elements defined i n  equation (120) 

tangential displacement 

abbreviation defined in equation (1 14) 

radial displacement (in. ) 

matrix elements defined in equation (122) 

matrix elements defined in equation (127) 

matrix elements defined in equation (129) 

matrix elements defined in equation (131) 

axial coordinate of the shell 

abbreviation defined in equation (96) 

elements of transmission matrix defined by equations (27) and (102) 

abbreviation defined in equation (1 16) 

real  part of the complex roots of the characteristic equation 

real  roots of the characteristic equation 

imaginary part of the complex roots of the characteristic equation 

"beef-up" parameter = 10/2iLc 

shear  flow applied to the frame 

see equation (60) 

real  part of r 
imaginary part of r 

(in.) 

(in. ) 

(lbs/in) 
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U .  in 

Ch1 

CQ 3 

abbreviations defined in equation (34) 

matrix defined in equation (41) 

matrix defined in equation (41) 

GLOSSARY O F  TERMINOLOGY 

The terms "Input ImpedanceT1 , "Transmission Matrix" and "Characteristic Length" 
a r e  used in this report and a r e  defined as  follows : 

Input Impedance is the relationship between the tangential displacement and shear 
flow harmonic coefficients of the  shell a t  the section of the loaded frame. 

Transmission Matrix. The forces and displacements at one end of a finite length of 
unloaded shell can be written in terms of their values at the other end. The square matrix 
defining these relationships is the Transmission Matrix. 

Characteristic Length. In this report there a r e  two Characteristic Lengths, defined 
as  follows. L is the distance required for the exponential envelope of the lowest order 
self equilibratfng s t r e s s  system to decay to l / e  of its value at x = 0,  provided that the 
skin panels a r e  rigid in shear. 
order  self equilibrating s t ress  system to decay to l/e of i ts  value at x = 0,  provided that 
the frames a re  rigid in bending. 

L, is the distance required for the envelope of the lowest 

INTRODUCTION . 
In many practical shell problems, the shell is uniform in the circumferential 

direction but varies discontinuously in the axial direction. These discontinuities may 
be caused by free ends, rigid bulkheads, planes of symmetry o r  antisymmetry, and 
frames whose bending stiffness is much larger than the typical frames. In Par t  I of 
this report (ref. l),  a stress-and-deflection analysis is derived for frame-supported 
shells on the assumption that non-externally-loaded frames could be "smeared out" 
in the axial direction, thus producing an infinitely long shell of uniform circumferential- 
bending stiffness. This assumption is  shown to introduce a considerable simplification 
in obtaining the desired results for shells whose bending stiffness does not vary greatly 
from frame to frame, except for the externally-loaded frame. A simple correction is 
derived to account for finite frame spacing. The analysis enables tables of coefficients 
for the computation of loads and deflections to be presented as  a function of one param- 
eter ,  y , in reference 2. 

Clearly, the model on which these results a r e  based is inadequate where there a re  
large variations in frame-bending stiffness near the loaded frame. A shell with marked 

. 
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discontinuities in frame-bending stiffness can be looked upon a s  being a number of finite 
lengths of shell (in which secondary frames are  "smeared out,1' a s  before) attached at 
their ends to the concentrated frames that cause the discontinuities in stiffness. Free 
ends, and planes of symmetry and antisymmetry cause similar discontinuities in 
circumferential -bending stiffness. 

In this report,the analysis of a finite length of shell is undertaken and the input- 
output relations a re  derived. These relations a re  defined by the elements of a transmission 
matrix. The transmission matrix for a frame is also given. Once these matrices a re  
known, the problem at hand can be solved i n  a simple and rational manner by applying 
the physical boundary conditions to the relevant matrix elements. 

In addition to indicating the exact solutions, an approximate method is proposed for 
correcting the basic parameter, y , of references 1 and 2, to account for the type of 
shell problem indicated. This enables the tables of reference 2 to be used directly for 
a wide variety of problems by using a value of y modified a s  indicated in this report. 

The derived methods frequently rely heavily on results obtained in reference 1, and 
i t  is assumed that the reader is familiar with that report. 

GENERAL FORM OF THE SOLUTION 

If load is applied to a single frame: the remainder of the shell enters the solution 
by means of the relationship between tangential displacement at the loaded frame and 
the net shear flow applied to the loaded frame by the shell. Let the net shear flow acting 
on the loaded frame be: 

The symmetric net shear flow harmonic coefficient is 

By analogy with equation (49) of reference 1, the relationship between tangential dis- 
placement and net shear flow will be: 

It can be easily proved that f (n) is a function of n such that 

I 1 for non-end frame 
Lim f (n) = constant = 2 for end frame Lr/Lc f 0 I 4 for end frame Lr/Lc = 0 n -  00 

provided that adjacent bays have "smeared out" frames. 
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4 2 Using the definition for the characteristic lcngth,L,,we have r / i  = 36 Lc4/ tqr  . 
'Substituting this expression into equation ( 3 ) ,  a more useful equation for f (n) is derived, 
i . e .  : 

I 2  3 2 2  

Kn 

- 
vn(o) Et r (n - n) . - 
A% 36Lc 3 f(n) = - . (4) 

The proof lies in the fact that nearby discontinuities in the shell have less  and less 
effect on the higher self-equilibrating s t ress  systems, and for  very large values of n, even 
a nearby discontinuity appears to be a large distance away. 
is not a t  the end of the shell, f(n) must approach one, because equation (3) is just equation (49) 
of reference 1, with f (n) = 1 and Kqn = 2 sn (0) . If the loaded frame is at the end 
of the shell, f (n) must approach two, i f  L r / L c  f 0 , because equation (3) is just equa- 
tion (B. 7)  of reference l with f (n) = 4 (Y .LC /Kn , which approaches two for n - 00 . 
For Lr  / Lc = 0 , 

Hence, if the loaded frame 

a n  L, approaches four a s  n - 03 . 
Kn 

The general form of the solutions for concentrated loads can consequently be written 
from equations (66) and (67) of reference 1 as :  

nPO 

Expressions for forces and displacements in the loaded frame and loads per inckin 
(0) in reference 1. The ratios i,(o)/aq,, the shell are given in terms of qn(o) and 

and G ( o ) / r $  are  found for a number of typical situations later on in this report. Hence, 
complete solu ions can be generated for each problem. This method, while yielding an 
exact solution, must be solved for each particular problem, since there are  too many 
parameters involved to cover the range of practical problems with a reasonable number 
of charts or  tables. 

n 

In equations (5) and (6) it is noted that f (n) always occurs multiplied by y . This 
raises the possibility that if f (n) does not vary greatly with n, it is reasonable to  use 
f (2) instead of f (n) for all values of n in equations (5) and (6). 
an approximation, if valid, is that the loads and displacements in the loaded frame and 
loads per inch in the shell can be obtained from the tables of reference 2 by using f (2) - y 
in place of y . 

The great utility of such 
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A s  an introduction to assessing the validity of this approximation, it is instructive 
to evaluate the function f (n) = 4 (Yn Lc / K  
loaded frame at the f ree  end of a semi-infinite shell. Utilizing the defining formulas for 

which applies to the problem of a reinforced n. 
a n  and Kn : 

The following table l ists  f (2)  and the ratio f (n) / f  (2) for various values of n and 

4 . 0 0  
3 . 7 0  
3 . 3 3  
3 .00  
2 . 6 7  
2.00 
- 

1.00 , 1 . 0 @  
.908 , .826 
.857 . 772  
,820 .778 
. 8 6 8  ! .816 

1.00  I .500 
. 7 6 3  1 .541 
.689 .600 

Observe that for n 5 5 , the maximum change in f (n) / f  (2) is of the order of 30 
percent. If f (2) were substituted for f (n) in equations (5) and (6 ) ,  the net effect on the 
solution would be very small ,  since: 

(1) The stress system for n = 2 tends to dominate the solution. 

(2) Differences between f (n) and f (2) are  of the order of 30 percent 
for n 5 5 . 

(3) Changes in y , and hence, changes in f (3 ) ,  f(4) , etc., of the order 
of 30 percent, produce small changes in the solution. 

For the case of the non-end frame, it has been shown that n - Lim f(n) = 1 . 0 .  
It is reasonable to expect that for n = 3 ,  4 ,  5,etc. , f (n) should lie &tween f (2) and 1. 
Hence,it is possible to establish a criterion for the substitution of f (2) for f (n) in 
equation (3).  This criterion i s  tentatively taken to be that for a %on-endql frame, the 
substitution will be acceptable if 1/4 < f (2)  < 4 , and for an end frame, the substitution 
will be acceptable i f  1/2 < f (2) < 8 . Otherwise it i s  necessary to compute the individ- 
ual corrections for each significant higheporder s t ress  system. 

This simplified approximation permits the treatment of the effect of nearby discon- 
tinuities by means of the basic tables (ref. 2 ) ,  plus simple graphs giving f (2) as  a 
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function of distance to the nearest discontinuity. For the derivations of these graphs 
i t  is necessary to develop the concept of a transmission matrix, relating the input- 
output loads and deflections for a finite length of shell. However, a note of caution 
should be sounded at this stage. The tables of reference 2 a re  derived for shells that 
are symmetrical about the loaded frame. 
computed by the approximate method indicated may be in e r ro r  for shells that violate 
that symmetry condition. 
symmetry occurs, the less significant does the e r r o r  become. 

Therefore, the loads per inch in the shell 

The further from the loaded frame that the cause of un- 

TRANSMISSION MATRICES 

Boundary Conditions and Introduction of Transmission Coefficients 

In addition to relationships between quantities existing at opposite ends of a finite 
length of shell, relationships between quantities on the opposite sides of a point of 
discontinuity must be written. The most general discontinuity to be considered is a 
flexible frame shown in figure 1. In writing relationships between forces and displace- 
ments, harmonic coefficients may be substituted for  the forces and displacements 
(ref. 1). The equations for the above figure a re :  

+ v (x ) = v (x-) = v' (x 1 n 1 n 1  n 1  

. 

Equation (12) follows from equation (62) of reference 1, with P = 0 .  
0 

Similar equations exist for the antisymmetric coefficients. For simplicity, only 
the symmetric case is considered here ,  but the results also apply for antisymmetric 
coefficients. 

Important limiting cases are obtained by setting I1 equal to zero or infinity. 

In some cases  i t  is convenient to use, in the part of the shell to  the left of the 
loaded frame, a coordinate x increasing to the left (the coordinate system for the shell 
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to  the right of the frame is rotated 180 degrees about a vertical axis). 
difficulties arise in connection with boundary conditions at the loaded frame, which 
a re  illustrated in figure 2. 

The only 

The boundary conditions a re  : 

For symmetrical loading: 

P(01: -@) = P(0T $1 

I v(0T - I $ )  =-v(01: 4) 

With these substitutions, trigonometric terms can be eliminated, leaving the 
following relationships between harmonic coefficients : 

PnW = P,(o*) 

a'gn = ace, + a,@*) 
u (0) = - u (O*) n n 

- 
v n (0) = vn(o*) 
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The relationships between force and displacement harmonic coefficients a t  the 
ends (x = 0 and x = l? ) of a finite segment of shell a r e  conveniently given by a 
4 x 4 matrix of transmission coefficients having the following form: 

This form of the relationship is convenient for  theoretical discussion and as a 
starting form for analysis. l a t e r ,  the following form will be introduced: 

- -I - .  _ .  . 
Et'r Un(o) 

(19) 
n 

r -  
- P (0 )  n n  

The boundary conditions of an unloaded frame can also be written in the form of a 
transmission matrix. Substitute equation (12) into equation (9) and write equations (8) 
through (11) a s  a single matrix equation: 

1 0 0 0 

3 
0 1 

0 0 1 0 

-EIl(n -n) 
r 4  

0 0 0 1 
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.cn cu 
0 

I4 
r: 

Relationships between quantities existing at any two locations in the shell can be 
obtained by multiplying transmission matrices for  the intervening frames and shell 
lengths (figure 3). 

Let Q, (x) stand for the column of four harmonic coefficients at x . Let trans- 
mission matrices for the bays be represented by [MI, and [MI2. 

Let  transmission matrices for the frames be represented by [Dl0, [Dll, and [D] 2 .  

Then 

In this part of the report, transmission coefficients are derived for a finite length of 
shell. The use of such coefficients for the solution of problems is treated in the third 
section. 

GENERAL PROPERTIES OF TRANSMISSION MATRICES 

It is evident, from Maxwell's reciprocation law, that not more than ten of the 
coefficients given in equation (18) are independent. If the equations of dependence can be 
discovered, they can be used to  eliminate calculation of some of the elements (if they 
are simple equations) and to check the operations involved in obtaining overall trans- 
mission matrices, such as equation (21). The properties of transmission matrices are 
discussed briefly in reference 3, pages 76 to 87.  The inverse of a transmission matrix 
can be obtained without numerical computations as shown in reference 3.  In order  to make 
use of this property, equation (18) must be slightly rewritten: 

F 

24 
-M14 1 M1l  -'12 -M1 3 

M22 M23 -M 21 
- - 

M44 
M34 I i . 4 1  M42 M4 3 

31 32 M33 -M 

Then, according to the result given in reference (3) : 

-M 
M33 M4 3 M13 

M34 M44 M14 

M31 M4 1 21 -M 

-M32 -M42 -'12 M22 J 
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Applying this result to equation (19), there results : 

1 -T8 -T6 T16 T14 

T 

-T12 - T 1 O  T4 

T3 -T -T 
11 9 

If the object to which the transmission matrix refers is symmetrical with respect 
to its ends, the inverse of the transmission matrix may also be obtained by principles 
of symmetry. 
of figure 4. 

The loading and displacements a r e  symmetrical with respect to the plane @ = 0 
so that the loading system shown corresponds to symmetrical harmonic coefficients. If 
the shell is  rotated through 180 degrees about a vertical axis,it will appear a s  in 
view (b) of figure 4. 

If the directions of q(1), u( i ) ,  q(o) and u(o) a r e  reversed in view (b), the loading 
wil l  be the same as  that in view (a),with (0) and (1) interchanged. Since the appearance 
of the structure is indistinguishable in the two cases,  due to its symmetry, equation (19) 
may be used with the following interchanges : 

For example, consider a finite length of shell, loaded as  shown in view (a) 

in(i)-- qn(0) 

q4- qp) 
Pn('e)- PJO) 
- 

The result is : 

T2 -T5 -T 6 

T4 -T 7 -T 8 - - 

10 T13 T14 -T 

-T12 T15 T16 



13 

6 By comparison of equation ( 2 5 )  with equation (4), the six following identities 
result : 

I T16 = TI 

T15 = T3 

T14 = T2 

T13 = T4 

T12 = T9 

T8 = T5 

This list does not exhaust the dependent relationships between transmission co- 
efficients. 
addition to the six introduced by reciprocity. A search for these additional relation- 
ships is not made. For any particular type of object, additional accidental relation- 
ships between coefficients may exist. The six relationships given above a re  used in 
later sections of this repcrt. 

The assumption of symmetry introduced three additional constraints in 

Input Impedance for a Semi-Infinite Shell 

For a semi-infinite shell segment, relationships must be obtained between the four 
quantities at the near end of the shell. These relationships have already been obtained 
in Appendix B of reference 1. They a re ,  rewritten in the style of equation (19): 

72 Lcan 4 6 L," 
4 2  2 2 2  n (n - 1) n (n - 1) 

- - 
2 -6 L, 

2 2  2 2  n (n - 1) n (n - 1) 
L 

Equation (27) is sometimes more convenient in the form: 

- 12 L:an 

z22  - -n2(n2-1)Et' 
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Transmission Coefficients for a Finite Length 
of Shell Without Stiffening Frames 

These transmission coefficients have already been obtained in Appendix A 
of reference 1. Rewrite equations (A. 6),  (A. 7),  (A. 8) and (A. 9) of reference 1 
in the style of equation (19): 

1 0 # O  

1 1  

0 1  

L I 

Note that the identities of equation (26) a r e  all satisfied. Note also that the coefficients 
all have the dimension of various powers of length. 

Transmission Coefficients of a Finite 
Length of Shell with Stiffening Frames 

The transmission coefficients a r e  obtained by solving the differential equations for 
a shell with "smeared-out" frames and evaluating the constants of integration in terms of 
Fn(o), ij (o), Cn(o) , and i- (0) for the symmetrical case. The constants of integration 
are exaa ly  the same for &e antisymmetric case. In reference 1 this is done for a shell 
extending to infinity and, in so  doing, terms with increasing exponential factors are 
eliminated. In treating a finite length of shell, all four roots (P  PZn, PQn, and P ) 
of the characteristic equation must be retained. The following did&arns show the loc&on 
of these roots. 

Complex roots 

,Im 
Real roots 



15 

n < Nc n > N  C 
- ._~ - 

P In = (Y n + j n n  

Pgn = - (y - 
- - Pgn = - an - Jon - - Pln I n  

P4n = - Q! n + Jan = - P2n P 4n = - a !  2n = - P2n 

Pln = a! In  

P2n = 01 n - jPn PZn = a! 2n 

- 

Each of the four quantities, p (x), .- (x), ii (x), and V (x), can be expressed a s  
exponential functions of the roots of%e ch P r a c t e h t i c  equaaons multiplied by un- 
determined coefficients : 

Q1 Q2 Q3 Q4 

*2 R3 R4 

s1 s2 s3 s4 

u1 u2 u3 u4 

P x  In 

'2nX 

'3nX 

e 

e 

e 

P x  4n e 

The number of undetermined coefficients can be reduced to  four by means of 
equations (17) through (19) of reference 1. 

stand for any one of the four roots, and Q., R., Si, and U. stand for the cor r  sponding 
undetermined coefficients. Then, by subsfitutlon of a coluAn of equation (29) into 
equations (17) thi'ough (19) of reference 1: 

The four general solutions satisfy these equations independently. 

(30) 
Ri 

pin 
Qi =- 

2 
s = -  * Q i =  

Et'r Pin i Et'Pin (31) 
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2 n Ri 
(32) 

1 1 

) = Etfr2Pin 
u = - ( ~ - G R ~  'in 

These results may now be substituted into equation (29). Some simplification 
results if common factors a r e  cleared to the left-hand side, and if  rows are interchanged: 

where 
1 I u = - - -  2 '  n In 2 

'in 

1 1  1 1 

1 1 1 1 
2 2  2 2 
- - - -  
'In '2n '3n '4n 

1 1 1 1  - - - -  
'in '2n '3n '4n 

- - - -  u3n a4n 

'In '2n '3n '4n 

2 
4 L- 

P x  In R e  
1 

p2x 

'3nX 

R2 e 

R3 e 

'4nX 
R4 e 

(33) 

( 34) 

It is convenient to substitute hyperbolic functions for the exponential functions. 
This is aided by the fact that, whether the roots are real  o r  complex, and P4,- - - PPn . Hence, 3n In  P = - P 

P x  P x  

R e  1 In + ~ ~ e  3n = N, cosh Plnx + N2 sinh p I n  x (35) 

where 

c 

and N = R - R  (36) 2 1 3  N = R  + R g  
1 1  
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Similarly, 

cn cu 
0 
rl 

I 
I4 

. 

P x  4n '2nX i R4 e = J1 cosh P 2 n ~  + J2 sinh P x R2 e 2n (37) 

where 

Other terms in t 

Quantity 
uation (33) can be similarly combined. The various coefficients a r e :  

Coefficient of cosh P x 
In 

- + - -  R 3  N1 

R 3  = -  N2 

2 
- -  

2 2 
'3n 

-I+- 
'3n 

R 

Coefficient of sinh P x 
In 1 

- - - - -  R3 N2 

'3n 
2 2 -  2 

Combine these results into a new matrix equation: 

- 
cosh Plnx cash P x 

1 1 -cash P x T c o s h P  x 
2 In 2n 

2n 

'2n 

- p l i s i n h ~  x - ' s i n h ~ ~ x  
In '2n 

Oln U2n - sinh Plnx - sinh P2z 
'In '2n 
- 

s i n h P  x s i n h P  x In 2n 

1 1 - Sinh phx T s i n h P  x 2n 
'2n 

p21 c o s h P  x 2n 
- p1 coshPlnx - 

In 

N1 

J1 

N2 

J2 
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The 4 x 4 matrix appearing in equation (39) can be factored into two matrices, 
each of which is conveniently written in partitioned form: 

where 

0 

[a 

cosh Plnx 

N 1  

J1 

N2 

J2 

1 r 1 

O I  

The four undetermined coefficients a r e  evaluated in te rms  of < (o), ii (o), pn(o), 
and Vn(o) by setting x = 0 in equation (40). For  x = 0 ,  the hypertolic s h e  is zero 
and the hyperbolic cosine is unity. Hence, 

N2 

(42) 

(4 3) 
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Invert these equations and write 

N1 

J1 

N2 

J2 

[q-l 0 

-1 P2 P2 
- l  

[A] = 
In  2n - _ _  - 
2 2  
In  2n - P - P  - I + 1  

1 

(44) 

(45: 

The complete result for transmission coefficients is obtained by substituting 
from equation (44) into equation (40) : 

I -  

* 
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Evaluation of Transmission Coefficients for Real Roots 

I * 

The roots of the characteristic equation are all real for n z N . In this case, 
P and P2n may be replaced by a and (Y 

da terms in the square matrix on tde right si% of equation (47) a r e  easily evaluated 
by carrying out the indicated operations. 

identities of equation (26) a r e  employed to reduce the number of calculations. 

in the results of the‘preceding section. 

The terminology of equation (19) is used in identifying coefficients, and the 

For  real roots , n 2 Nc 

T 2 = T 14 = K [ - cosh alnx + cosh C Y ~ ~ X  I (49) 

T 3 = T l5 = +[I f f 2  a cosh a In  x - cosh C Y ~ ~ X  1 
In  2n 

T = T  = K [ - -  cosh (Y x + - 2 -  cosh aznx]  (51) 

In a 2n 
2 
In  CY 

4 13 

T = T  = T  = K [ - -  s inha lnx  + - si& a 2 n ~  
In  2n 5 8 10 CY 

T 6 = K [ - a In  sinh alnx + a2n si& a2nx 

U U 
sinh alnx - In si& a2nx T = K [  5 - 

In  2n 7 

T = T  =+[ a si& a h x -  a 2n s inhoZnx]  (55) 

In  ff2n l2 CY 
9 

r 1 

K, aln,  a2n, uln, and a2n are expressed in te rms  of the shell quantities, a s  follows: 
aln and CY a r e  given in equation (32) of reference 1. 2n 
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e 

i 

(T and ( T ~ ~  defined in equation (34) are, by virtue of the functional form of (Y In In  
and (Y . 2n' 

and 

and 

4 L2 
1 1 

( I =  - -  L=-L 2 2 n2 (y2 LY 2n 2 n  (Y 
a 2 n = - - - = - -  and 1 

In 2n In  In (Y 

1 K =  

n 

- K 
@ 2  (Y2 - 2 2 n (n - l )an In 2n 

Evaluation of Transmission Coefficients for Complex Roots 

The roots of the characteristic equation are complex for n < Nc . 
In this case: 

Pln = a n + j P n  

Pa = an  - j pn  = P& 
(59) 

In' where P& 

(Y = CY + jpn and ( Y ~ ~  = an - j pn , because no special properties of the real roots were In n 
employed. If this substitution is made, it is observed that the second te rm inside the 
bracket in the formula for each coefficient is the conjugate of the first term.  

means the complex conjugate of P 

Equations (48) through (56) of the previous section a r e  valid with the substitution, 
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Let r be the value of the first term.  
is 

Then the value of the bracketed expression 

r - r *  = 2jIm r 

where Im - r is the imaginary part of r . 

The factor K has the following value: 

Hence, 

and 

2 2 2  
(an + 8,) 

"n'n 
K(I' - r*) = 1 m . r  

K ( r  - r*) = I m a r  

'In '2n 
2 2  

The hyperbolic functions become : 

cosh (an  + j p  )x = cosh a x cos pnx + j sinh anx  sin pnx 

sinh (an + j p )x = sinh anx  cos p nx + j cosh anx  sin p x 

(64) 

(65) 

n n 

n n 

To simplify the writing of the equations, use the following abbreviations : 

fzn(x) = sinh anx  sin P x f I n  (x) = cosh anx  COS P,x; n 
(66) 

f3n(x) = sinh anx  cos Brix; f4n(x) = cosh anx sin Pnx 

The factors I m  l? a re  evaluated below for each of the te rms  in the transmission 



c 

T2 : r = - (fin + j f2J  

I m ‘  r =  - f  2n 

I T3 : r = fln + j f2n 

1 m . r  = f 2n 

23 

I 
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The equations that follow can be simplified by writing: 

I m *  r = f l n f g n  + f fn f4n  

I m  r = f (an I m  *cr + p n R e .  a)  + f4n(an Re * v -  f i n  I m *a) 
3n 

Hence, the transmission coefficients for complex roots a re :  

2 2  (e, - P ,  ) 
T = T16 - f2n 1 - + 2anPn 

2 2 2  - (an + P,) 
T g = T  = 2n 14 ffYnPn 

1 
T 3 = T  15 = 2 "n8, f2n 

2 2  
(an - P n )  

T = T  4 13 - - 'ln- f2n 

T = T = T  = 
5 8  10 
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2 2  
(an + P,) 

- - [ -(an + P Reo) f + @,Re a - pn I m ~ ) f ~ ~ ]  (84) T7 2 f f n P n  - n 3n 

1 - - 1 [(an I m a  + p n R e o )  f + (a R e o  - p  I m o )  f4n n T1l 2 f f n P n  3n n 

(86) 

an and Pn appearing in these equations a r e  evaluated below in The function of 
te rms  of n, Lr,  Lc and 
reference 1, as: n’ 

a an and 8, are given in equations (29) and (30) of 

n‘ 

f ln ,  f2n, fan and f4, are defined in equation (66). 
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IJsing the equations derived, the transmission coefficients can be computed for 
each value of the harmonic index, n . This has been done for  n = 2 and L /L = 0.4. 
The results a r e  shown in figure 5. It remains to  be shown, by means of a nJmb8r of 
simple but useful examples, how these coefficients are used in the solution of practical 
problems. 

EXAMPLES OF DISCONTINUITIES NEAR THE LOADED FRAME 

Discussion 

In the f i rs t  section the foundations are laid for  solving shell problems involving 
certain discontinuities in the shell. It is shown there that such problems can be 
approximately solved by use of the tables of reference 2, once the function f(2) is 
known. The limitations of this simplification a r e  discussed in the first section. 
the major effort is devoted to the case of the harmonic index equal to  2, it is desirable 
to indicate the exact solutions at the same time. These consist of a superposition of 
the stress systems for each n. In practice, adequate convergence of the Fourier 
series is obtained using only a few values of n . For  this reason the example problems 
a re  solved in te rms  of the harmonic index, n , and specialized to n = 2 for the numerical 
calculations that yield the approximate solution. 

While 

In this section solutions a re  derived in the form of matrix equations, giving the 
input impedance for a variety of problems involving discontinuities near the loaded frame. 
It is implicitly assumed in the derivation of the tables of reference 2 that the shell is 
symmetric about the loaded frame and therefore If the 

\(+I equals A . For any loaded frame is at  a free end, either 
condition between these extremes the r %(Os) io of "k$ to A\ depen s on the problem 
and is a function of n . Hence, when the appro mate solu on involving the modification 
of y and use of the tables of reference 2 is utilized, the loads per inch in the shell may 
be in error when the shell and frame stiffness is not symmetrical about the loaded frame. 
In the following text the results for symmetric and antisymmetric externally applied 
loadings are identical and only the symmetric case is considered. In all cases the shell 
elements are  taken to have a circumferential-bending stiffness per unit length, due to 
"smearing out" all the frames except those specifically mentioned a s  producing the 
discontinuity and the externally loaded frame. 

o+) = qn(o-) = A g / 2  . 
?I 

Two Rigid Bulkheads Symmetrically Placed About the Loaded Frame 

The loaded frame is at  x = 0 ; the shell extends to 00 in both directions and has 
infinitely stiff bulkheads at x = i .l (figure 6). The transmission matrix giving the 
relationships between force and displacement harmonic coefficients for the finite shell 
lengths is given in equation ( I  9). 
section for n > Nc, and n < Nc . 

semi-infinite shell a r e  given in the second section (equation [2q) . 

The transmission coefficients a r e  given in the second 

Relationships between the force and displacement coefficients at the end of the 
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The equations of connection of rigid bulkheads are taken from the second 
section and a r e  a s  follows : 

Boundary Conditions 

Due to symmetry, it is necessary to consider only one side of the shell. For  the 
same reason: 

(94) UJO) = 0 

The bulkhead, rigid in its own plane, prevents tangential displacements, i. e. : 

v n (.e*) = is n ( a )  = 0 (95) 

Using equation (95) in equation (2Qwe have: 

- 
u n (.e*) = [ z22- 3 pn( a*) E z On( a*) 

From equation (93) it is seen that equation (96) can be written as: 

Solution 

Substituting equations (84), (95) and (97) into equation (19) we obtain the following 
matrix equation: 

1 - 

T1 T2 T5 T6 I 

. 
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Multiplying the third row by Et' Z and subtracting it from the second, thus 
eliminating the third. row, equation (98) is  simplified to: 

i T5 T6 

T3 - Et'Z Tg T7-Et 'ZT13 T8-E t 'ZT  14 = I  
T15 6 

Inverting this equation we obtain: 

In any case of symmetry about the loaded frame, - 
i q o )  = - 2 

- - .n. 2 - A31 V n ( d  
Therefore, the Input Impedance = 

%I(~) 2 E t f r 2  

where 
r - l I  

E t t r 2  - 
2 'n(O n 

(99) 

and I T I is the determinant of the square matrix in equations (99). Clearly, it is not 
necessary to evaluate this determinant for the solution of this problem. 

Substitution of Input Impedance given by equation (101) into equation (4) gives f(n). 
Figure 10 shows f(2) plotted as  a function of J/L for L /I = 0.4. As a check on 
the basic premise of the first section that f(n) ca#be replbcetfby f(2), i . e . ,  
f(n)/f(2) 9 1.0 , it can be easily shown that for this problem, f(2)/f(3) = 0.70 for J/Lc = 1. 0. 
Satisfactory agreement was obtained for the following problems as well. 
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A Rigid Bulkhead on One Side of the Loaded Frame 

The shell, frames and coordinate system a r e  shown in figure 7. Since there is 
no symmetry about the loaded frame, %(o) + E-i-/2 and the shell on both sides of 
the loaded frame must be taken into account. 

Therefore, there are three elements of shell governed by three sets of equations, 
as given below, to be considered. 

For the finite length, 0 < x < L : equation (19) holds. 

For semi-infinite shell extending from .l to m , 

In the case of the semi-infinite shell from x* = 0 to m , 

Boundary Conditions 

In the second section, the boundary conditions relating the harmonic coefficients 
are discussed and the results are quoted here: 

At x = x * = O  

A t  x = l  

, 

The rigid bulkhead prevents tangential displacements, i. e. , 
- 
vn(.e) = v n ( a )  = 0 (106) 
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- 
q o )  - &Jo) 

- 
Vn(0)  

Solution 

Using boundary condition of equation (1 06) in equations (102) allows ii ( e )  to 
Substituting equations (105) into this exp&sion be expressed in terms of 

gives : 
( 4  . n 

u (.e) = [ z22 - Zll Pn(4  (107) 
z12 z21 1 - n 

I 

(109) 

Substituting equation (107) into equation (19), multiplying the third row by Et'Z and 
subtracting from the second, we have : 

T1 T2 T5 T6 

1 
T3-Et 'ZT T -E t 'ZT  T7-E t 'ZT  T -E t 'ZT  9 4  10 13 8 

T9 T 1 O  T1 3 T14 

12 H13 
H 

H1l '231 

H22 

'31 '32 H33 



where 
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z11z22 r Z  
Hll = [ T1 + % 1 Z21 - - 

z12 12 

z12 T2 n z12 
H12 = [ -? (Z21 - z11z22 1 -- zll T5 ] 

T.+" - 
T5 1 nz22 

H13 = [ T6 - 2 Et 'r  Z12 

z z  rZ 
H21 = [ (T3 - Et'ZTg) + - Et'r I -" ] (T4 - Et' ZTlo) + 3 (T7 - EtfZT13) 

z21 Z12 nz12 n 

rZ 
l1 (T7 - Et'ZT13) - 212 I (T4 - Et'ZTlO) - - nz12 

z11z22 
H22 = [ - e 

9 Z  22 + n H23 = [ (Tg-Et'ZTl4)-(T4-Et'ZT 10 ) r Z  - 11 Et'rZI2 (T7 - Et'ZT 

n 

The inversion of equation (110) yields the solution for  the Input Impedance as follows: 

q o )  - ," 1 2 1  "32 - H22 "3\ 
= -  

a%(0) Et r 21 33 - H23H31 

This equation substituted into equation (4) gives the f(n) which is needed for the 
general solution of the shell problem. Figure 10 shows f(2) as a function of a/Lc for 
Lr/Lc = 0.4 . (curve for  p j  = a) 
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A Heavy Frame on One Side of Loaded Frame 

This case is similar to that of a single rigid bulkhead; the difference being that 
Tn(l) ,  the tangential displacement at the heavy frame, is dependent on the stiffness of 
the frame. 

For  a frame that is not subjected 

The shell, frames, and coordinate system a r e  shown in figure 8. 

Let Il be the inertia of frame at  x = 1 . 
to any external loads, we have from equation (62) of reference 1, 

4 r v,(l) = - 3 2 Tqn(a) 
EIj(n - n) 

From the definitions of Lc and -y, we have, 

r 4 36 L t  
2 '1 2-yatlr 

- = -  

Substituting equation (113) into equation (112), 

, 3  

Substituting equation (114) into the stress-displacement relationships for the semi- 
infinite shell given in equation (102) and observing the equations of connection (105), 
equations (102) may be written: 

Using equation (114) and equation (115) enables equations for va(j) and un(.l) to 
be written in terms of the s t ress  harmonic coefficients, %(e)  and pn(j) . 

where 
'11 z21 ] and Z* = [ z22 - 

p* = [ z21 -(w+ Zll) 
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As IQ - 03)  W - 0 . Thus, it is obvious that, a t  the same time, 
In the limit we have the solution, given previously, for 

Z* -c Z ,  
P* - 0 , 
the rigid bulkhead. 

and Vn(L) - 0 . 

Substituting for the displacement equation (116) into the transmission constant 
equation (19), we obtain 

T1 T2 T5 T6 

T3 T4 T7 T8 

2 E- 
2 ',(' n 

wzll R , the third row by E t ' r2  Multiply the first row by ,Z . 
(W+ Z l l )  

E Q , and subtract both from the fourth. Et 'r  ZI2 - .  
n (W+ Z l l )  

Then multiply the first  row by E t ' rP /n  and the third by Et'Z* and subtract 
from the second. By doing this two zeros a re  introduced into the left-hand-column 
matrix of equation (117) which becomes, 
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Note that except for the modified form of the square matrix, this equation is 
the same a s  equation (108), referring to  the case of a rigid bulkhead. Hence, from 
this point on, the solution is the same as for the rigid bulkhead. Using the results 
previously obtained, we may write: 

where 

Bll = Hll of equation (110) 

B12 = H12 of equation (110) 

- B13 - H13 of equation (110) 

Et ' r  .11Z22 Et 'r  
B21 = [k3 - P*T1 - Et'Z*Tg)+ n [ Z21 - - .12 1(T4 - y P * T  2 

- Et'Z*T1,,) + - rzll (T7 - Et'r 7 P*T5 - Et'Z*T 
".12 

11 r Z  
Etr P*T - Et'Z*T10 2 

(T, -7 Et'r P*T5 - Et'Z*T13) ] 
".22 Et 'r  B23 = [ ( T 8 - y  Et'r P*T6 - Et'Z*T14 ) - q (T4 - n P*T 2 - Et'Z*TlO) 

+ Et'rZ12 ( T 7 - ~  Et'r P*T5 - Et'Z*T13 

z11z22 
QT1o) 

Et 'r - 
~ 3 1  - [ vll - R T ~  - QTJ + 7 I z21 - 7 \q2 - R T ~  - 

(T15 - RT5 - QT13) 1 + -  lZll  

nz12 

c 
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rZll  I (T12 - RT2 - QT ) - - 1 Z21 - ~ 

5 1 Z 2 2  

z12 10 nZ12 (T15 -RT5 -QT13) ] 
nz22 n (TI5 -RT5 - QT 

B32 = [ - 
B33 = [ (TI6-RT6-QTl4) - - rZ12 ( T 1 2 - R T 2 -  QT1O) + E t 1 r Z I 2  13) 3 
The inversion of equations (119) gives the Input Impedance as 

= i' v21 

p 3 1  

v12 

v22 

v32 

- 
sn!4 

0 

0 

Et ' r  

11 

The substitution of equation (120) into equation (4) gives the f(n) required for the 
general solution of the problem. 
values of y a .  

Figure 10 shows f(2) for Lr/Lc = 0.4.  and various 

Free End at a Finite Distance From the Loaded Frame 

Before finding the Input Impedance it is necessary to  find the relationships between 
the s t ress  and displacement harmonic coefficients for a finite length of shell, free at one 
end. The coordinate system is illustrated in figure 9. 

The relationships between the harmonic coefficients at the ends of the finite length 
of shell a r e  given by equation (19). 

At the free end the stresses are zero: 

Substituting these boundary conditions into equation (19) gives two equations for 
T (0 )  in terms of p (0) , s ( o )  , and ii (0 )  . Equating these values of V,(o) , an equation 
f& ?i,(o) in terms 6f stress coefficienes B(o) and Fn(o) is obtained. Asimilar 
equation is given for Tn(o) . These results a r e  expressed as :  
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where 
2 

T1 T2 Et ' r  n 
xll = [ - 
X 1 2 = [ - T g - q  T5 T2 Et' X22 

- '6 7 .21]  Et1r2 

n 

n 
Et'r 

. -  - 
- -- 

x22 - 

T14 

It can be shown that X12 = - XZ1 . These results a r e  used to find the Input 
Impedance. 

Input Impedance 
At the loaded frame the stress-displacement relationships for the finite length of 

shell a r e  given by equation (122); for the semi-inifinite shell, they a r e  given by equation 
(103). 

The equations of connection or  boundary conditions at the loaded frame a r e  given 
by equation (104). 

Applying equations (104) to (103) the latter may be rewritten as: 

After combining equation (122) and (123) and rearranging, 
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h 

Inverting the square matrix to solve for (0) and p (o), and substituting the 
result into equation (122) enables the Input I m p e h c e  to be &en: 

It is known h a t  when the free end is a large distance ( l / L  > 1 . 7 2 )  from the 
Zik . This limiting C loaded frame, its effects become negligible and that Xik equals 

case is now examined. 

Equation (125) becomes 

0 1 

2z11 

1 

0 2z22 

r 1 z:2 z 2 1  

z22 
= 1’2 I zll - 

zll 

-z21 

This result can also be obtained by applying symmetry conditions r%(o) = 2 (0 Q n )  and U (0) = 0. n 

Bullt -In End at  a Finite Distance From the Loaded Frame 

All cases in which only a finite length of shell exists on one side of the loaded 
frame can be dealt with in the same manner. The boundary conditions at  x = .l bring 
about the difference. Hence, the case of the free end will be taken as  a basis for this and 
the two similar cases of a plane of symmetry o r  a plane of anti-symmetry at x = 1 . 

Solution 

Substituting the boundary conditions (a) = V (1) = 0 into equations (19). the 
displacement-stress relationships for the finiee shell Yength at the loaded frame a r e  found 
a s  follows: 

(127) 
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where 

* * 
- xll + zll x12-  z12 Vn(0) 

x 2 1 -  z21 x22 + z22 I’ 

* 
x1 1 

z l l  

-z21 
(128) 

* 

1 
Et’ 

. -  * 

The identities of equations (z6) have been freely used in deriving these four co- 

.l /Lc increases. %ese facts a r e  to be expected from the 

Except for the difference in the coefficients of the equations governing the finite 

efficients. It can be shown that X12 
corresponding Zik as 
previous work. 

length of shell, the equations of this system a re  the same as  for the case of a free end at 
a finite distance from the loaded frame. 

Hence, using equations (127) in place of (122) and carrying through the operations 
given for the case of the free end, we arr ive at the Input Impedance: 

= - X* and that the coefficents converge to the 

T 
P 
0 
Iu 
\o 

c 

* 
i. e .  , the Xik replace the Xik of the case of a free end at x = L . 

plotted against 
The Input Impedance, substituted in equation (4), gives f(n). 

It is seen in figure 11 that this is the only case where the effects of a discontinuity 

Figure 11 shows f(2) 
L / Lc . 

extend beyond a /Lc = 1.0’0. 

C 
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Plane of Symmetry at a Finite Distance From the Loaded Frame 

. 

A s  mentioned in the case of the built-in end, the only differences between this 
case and that of the free end at x = k ?  

stress-displacement relations to !e found for the finite length of frame at  x = 0 . 

are  the boundary conditions at  that point. 

Imposing the conditions q (1) = U (1) = 0 on equations (19) enables the following 

where 

r 
T1 T2 

x;1 = 1- '6 -% 
2 n 

Et 'r  2 

It can easily be shown that X i 2  = - X i 1  and that Xik converges to the 

corresponding Zik a s  a/Lc becomes large: 

Replacing the coefficients Xik of equation (125) by the Xik of equation (130), we 

have the equation for the Input Impedance. 
- 1  

The f(n) required is obtained by substituting equation (130) into equation (4). The 
values of f(2) a r e  given in figure 11 for Lr/Lc = 0.4. 
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Plane of Antisymmetry at a Finite Distance From the Loaded Frame 

Apart  from the different boundary conditions at  x = .e , this case is the same as 
that of the free end at a finite distance from the loaded frame. 
p ( i )  = V ( i)  = 0 are applied to equations (19) for the finite length of shell, we obtain 
&e followrng stress-displacement relationships a t  the loaded frame : 

If the boundary conditions - 

where 

xy2 = -x i1  . Et' 

Note that the identities of equation (26) have been used in the presentation of these coefficients. 

Hence, the Input Impedance can be written by replacing the Xik's of equation (125) 
by the corresponding Xik's of equation (131) .  

z l l  

-z21 
(132) 

Substitute equation (132) into equation (4) to give f(n) for  this problem. Figure 11 
shows f(2) as a function of i /Lc for Lr/Lc = 0.4  . 
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4 

Additional Relationships Between Coefficients of Transmission 
Matrix of a Finite Length of Shell 

The six identities of equations (26) were derived as  a result of reciprocity 
argument, and it is mentioned there that at least three additional relationships exist 
between the coefficients. 

It can be s b w n  that in the square matr\ces of equ,ations (122), (127), (129), 
and (131), X12 = - XZ1 ; XT2 = - x;l , * X12 = - X Z 1  and xy2 = - x i 1  . 
Using the values of the coefficients given in  the four equations mentioned, the following 
relationships can be shown to exist between the transmission coefficients. 

T T - T  T + T  T - T 1 T 8  = O  4 5  2 7  3 6  

T T - T  T + T2T11-T1Tg = O  4 9  3 8  

T:- T2 T4 + T6 T9 - T1T2 = O  

T T - T  T + T  T - T 8 T 1 1 =  0 3 4  7 9  1 3  

These equations can be usefully employed as  a check on numerical work. 

Lockheed Aircraft Corporation, 
California Division, 

Burbank, Calif., October 1959. 

(13: 
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Figure 1. - General discontinuity in the shell. 

t 

Figure 2.  - Exploded view of shell-frame intersection to illustrate 
the boundary value problem. 

4 



44 

Figure 3. - A shell with many stiff frames. 

A 

B 

Figure 4. - Loads and deflections in the shell used in the derivation 
of the elements of the transmission matrix. 
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F i g u r e  5. - Transmiss ion  constants for a finite length of she l l  n  = 2,. and Lr/Lc = 0.4. 
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TO a TO Q) 

__c_ 

LOADED FRAME 1- +- Z I P  

TO ~4 

Figure 6.  - Two rigid bulkheads symmetr ical ly  placed about the loaded frame.  

TO 
t 

\ 

LOADED FRAME RIGID BULKHEAD 

Figure 7. - A rigid bulkhead on one s ide of the loaded frame. 

TO m -L 
LOADED FRAME \HEAVY FRAME 

T 

. 

Figure 8. - A heavy frame on one s ide of the loaded frame. 

I----&+ 
TO 
m- ...'LE? LOADED FRAME 

Figure 9. - A f r ee  end at  a finite distance f rom the loaded frame.  

c 
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. 

- 

- 

TWO RIGID BULKHEADS SYMMETRICALLY 
PLACED ABOUT THE LOADED FRAME - 

- 

- 

- 

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
a 

Figure  10. - A single f r a m e  on one s ide of loaded f rame o r  two rigid bulkheads 
symmetrically placed about the loaded f r ame  curves of f(2) and f(3). 
L /L = 0 . 4 .  r c  
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f (2) 

4.0 I I I I 1 I I I I I I I 

/-+-I 
TO 00 

3.5 - - 

- 

- 

FREE END AT x = k  

PLANE OF SYMMETRY 
AT x - 1  1.0 - 

PLANE OF ANTI-SYMMETRY AT x . 1  

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.4 2.6 2.8 

2/ Lc 

. 

Figure 11. - Finite length of shell on one side of loaded f rame f(2) v a /Lc for  various 
boundary conditions at x = . L /L = 0.4 .  r c  
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